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Abstract

This paper describes the experience, problems and successes found in implementing a unix-like operating
system kernel in rust. Using the basic design and much of the lowest-level support code from the Weenix
operating system written for CS167/9 I was able to create a basic kernel supporting multiple kernel processes
scheduled cooperatively, drivers for the basic devices and the beginnings of a virtual file system. I made
note of where the rust programming language, and its safety and type systems, helped and hindered my
work and made some, tentative, performance comparisons between the rust and C implementations of this
kernel. I also include a short introduction to the rust programming language and the weenix project.
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1 Introduction

Ever since it was first created in 1971 the UNIX operat-
ing system has been a fixture of software engineering.
One of its largest contributions to the world of OS
engineering, and software engineering in general, was
the C programming language created to write it. In
the 4 decades that have passed since being released, C
has changed relatively little but the state-of-the-art in
programming language design and checking, has ad-
vanced tremendously. Thanks to the success of unix
almost all operating system kernels have been written
largely in C or similar languages like C++. This means
that these advances in language design have largely
passed by one of the fields that could most benefit
from the more expressive, more verifiable languages
that have come after C.

The goal of this project is to try to create a unix-
like operating system kernel using the rust program-
ming language. As far as I know, this is a project
that has never really been attempted seriously, nor
had anyone made much progress on before now1.
By doing so I will be able to explore the feasibility
and convience of creating a kernel with a higher-level

1 All other rust operating systems I was able to find were
little more than toys capable of running basic rust code. Few
had any notion of threads of execution and even fewer had any
form of process control beyond starting new threads. None
had any form of drivers beyond painting the screen and maybe
echoing key presses without processing them.
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language such as rust, as well as find where the lan-
guage could be improved to better suit this purpose.
Furthermore, it will allow us to evaluate how well the
basic design of unix holds up when examined through
a language other than C. Finally, we will see how the
much more sophisticated type and safety system of
rust handle the complicated task of verifying a ker-
nel.

In order to allow me to begin working on the more
high-level parts of the kernel faster, I based my ef-
fort off of the weenix operating system that is im-
plemented in CS169. This allowed me to not worry
about implementing many of the lowest level pieces
of the kernel, such as the memory allocators, which
are not specific to operating system development.

1.1 The Weenix OS

The Weenix operating system is a small x86 based
teaching OS created in 1998 for use with Brown’s
CS167 course on operating systems[12]. Today, stu-
dents in the optional lab course CS169 attached to
CS167 implement much of the higher level pieces of
a unix-like OS with weenix. Students doing this
project start out with the code necessary to get
the OS booted and running C code, with memory-
management, a debug-printing system, and a basic
libc implementation. Using this as their base, CS169
students then proceed to implement a fairly complete
unix OS. The project, and its support code, are writ-
ten almost entirely in C, with some of the initial boot
code being x86 assembly, and some python and shell
scripts for running and testing the OS.

This project is split into multiple parts, commonly
referred to as, PROCS, DRIVERS, VFS, S5FS, & VM. For
PROCS, they implement a unix-style process model,
with parent-child relationships among processes and
a init process, as well as a simple scheduler and syn-
chronization primitives. During DRIVERS, they imple-
ment large parts of a TTY driver, allowing user input
and interaction, as well as a (very bare-bones) ATA
driver allowing use of a hard-disk. For VFS, they im-
plement a virtual file system type abstraction, using
a provided ram-backed file system called RamFS for
testing. In S5FS, a version of the sysv-fs file system,
called the S5 file system, is implemented to allow real
non-volatile storage. Finally for VM a virtual memory
and user-space is implemented. There are also many
provided user-space utilities that allow one to test the
final OS.

1.2 The Rust language

The rust2 programming language is a relatively new
systems programming language being made by the
Mozilla foundation. It is designed to be usable as a
replacement for C in the low-level and embedded pro-
gramming environments that are common for small
and high-performance software. The Mozilla Founda-
tion is currently using rust in a few official projects,
including the rust compiler (rustc), and an exper-
imental web-browser called Servo. It also plans to
begin using rust code in its popular Firefox web-
browser in the near future[4]. Rust is currently being
developed and hosted on Github3. The project is
very popular and open, with thousands of contribu-
tors, most of whom are not associated with Mozilla.

Rust itself is a procedural programming language
with C-like syntax. It uses its very comprehensive
type system, a data ‘lifetime’ system, and an ex-
tremely small runtime to ensure memory and thread
safety during compile time. Specifically, rust uses
its ownership and lifetime tracking system to ensure
that data is not unexpectedly modified when it is still
being used by another object. Furthermore, it uses
the lifetime tracking system to ensure that there are
no dangling pointers possible in the language. The
runtime of rust is made up of several pieces, many of
which are separable. Its only required (and most ba-
sic) function is to simply recover from out-of-memory
or other fatal errors. In most cases, including most
of reenix, it also provides an interface for allocation
of heap memory. All other functions of the runtime
are essentially just to provide a consistent interface to
the underlying operating system it is running on, al-
lowing disk-io, inter-process communications and the
creation of threads, among other things.

1.2.1 Syntax & Semantics

The syntax of rust is similar to, but slightly differ-
ent from most other C-like programming languages.
Figure 1 contains a basic quicksort implementation in
rust that I will use to illustrate some of the languages
features. A full description of the rust syntax and se-
mantics can be found online at doc.rust-lang.org4.

The most notable difference is that rust has a
somewhat different divide between expressions and
statements. In rust an expression is any piece of
code that yields a value. A statement, on the other

2http://www.rust-lang.org (April 2015)
3https://github.com/rust-lang/rust (April 2015)
4http://doc.rust-lang.org/reference.html (April 2015)
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1 //! A basic quick -sort implementation
2

3 /// A type generic quick -sort. ‘T‘ is the type we are sorting , it must have a total ordering
4 /// (implement the ‘Ord ‘ trait). It takes a list by value and returns a sorted list containing the
5 /// same elements sorted. We say that this passed in list is mutable so we can modify it.
6 pub fn quicksort <T: Ord >(mut lst: Vec <T>) -> Vec <T> {
7 // Get the first element as our pivot , Pop will return None (and go to the else branch) if this
8 // list is empty , otherwise it will remove the first element from the list and return it.
9 if let Some(pivot) = lst.pop() {

10 // Split list around the pivot. We iterate through the list (into_iter function) and
11 // partition it into two lists. The partition function turns an iterator into a pair of
12 // lists where the first is a list of all elements where the condition given is true and
13 // the other is false.
14 let (less , more): (Vec <_>, Vec <_>) = lst.into_iter (). partition (|x| x < &pivot);
15 // Recursively sort the half of the list less then the pivot. This will be the start of our
16 // returned list.
17 let mut res = quicksort(less);
18 // Push the pivot element onto the end of the sorted lower half of the list. This appends
19 // the pivot onto the ‘res ‘ list.
20 res.push(pivot);
21 // Sort the larger half of the list and append it to the sorted lower half and pivot.
22 // extend will append the entire given list onto the ‘res ‘ list.
23 res.extend(quicksort(more ));
24 // Return the now sorted list. Note the return statement is not required here. Simply
25 // making this line ’res ’ (note the lack of a ’;’) would be equivalent since the function
26 // will return the value of the last expression (this if-else) which takes the value of the
27 // last expression in its branches (Vec <T>).
28 return res;
29 } else {
30 // Since lst.pop() returned None the list passed in must be empty so we will return an
31 // empty list here. Note that return is not needed because this is the last expression in a
32 // block and this block is the last expression in the function. vec! is a standard macro
33 // that creates a Vec <T>.
34 vec![]
35 }
36 }
37

38 fn main() {
39 // Create a list to sort. vec! is a macro and will create a vec containing the elements listed.
40 let lst = vec![3,1,5,9,2,8,4,2,0,3,12,4,9,0,11];
41 println !("unsorted: {:?}", lst);
42 // Call quicksort. This relinquishes ownership of lst.
43 println !("sorted: {:?}", quicksort(lst));
44 }

Figure 1: A rust quicksort
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1 /// A trait. Structs and enums can implement this.
2 pub trait Id {
3 /// A required function. All implementers must provide a definition for this function or else
4 /// type -checking will fail. The ’static means the returned string must be statically
5 /// allocated.
6 fn username (&self) -> &’static str;
7 /// A function with a default implementation. The returned string must be usable at least as
8 /// long as the Id exists. The ’a means that the returned str must be usable at least as long
9 /// as ’self ’ is. The type checker will ensure this is true.

10 fn screenname <’a>(&’a self , _board: &str) -> &’a str { self.username () }
11 }
12

13 /// A structure. The derive provides default implementations for the given traits. Only certain
14 /// traits may be implemented in this way.
15 #[ derive(Debug , Eq, PartialEq )]
16 pub struct Account { name: &’static str , msgs: Vec <u64 >, }
17

18 // Implementing the Id trait. Note we do not need to provide a ’screenname ’ implementation since
19 // there is a default version.
20 impl Id for Account {
21 fn username (&self) -> &’static str { self.name }
22 }
23

24 // Functions associated with Account directly.
25 impl Account {
26 pub fn get_messages (&self) -> &[u64] { &self.msgs [..] }
27 }
28

29 #[ derive(Debug , Eq, PartialEq )]
30 pub enum Commenter {
31 /// An enum variant with data
32 User(Account),
33 /// An enum variant without data
34 Anon ,
35 }
36

37 /// Implement the Id trait.
38 impl Id for Commenter {
39 fn username (&self) -> &’static str {
40 // We take different actions depending on the variant.
41 match *self {
42 Commenter ::User(ref a) => a.username(),
43 Commenter ::Anon => "Anon",
44 }
45 }
46 }

Figure 2: Rust traits and types
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hand does not create a value. Within functions ev-
erything is generally an expression except for (1) let
variable bindings, such as on lines 14, 17, and 40 of
Figure 1, (2) looping constructs, and (3) any expres-
sion or statement with a semicolon (;) placed after it.
Note that blocks, delimited by curly-braces ({}) are
also expressions, using the value of the last expres-
sion they contain as their value. In the same vein
both if-else and match blocks are also expressions.
In Figure 1 the if-else block beginning on line 9 is
an expression of type Vec<T>, for example. Rust takes
this idea of the final expression of a block being its
value even further, placing an implicit return before
the final top-level expression in a function (in Fig-
ure 1 this is the if-else starting on line 9); one may
still use ‘return <value>;’ to return earlier, however.
This can be seen on lines 41-44 of Figure 2, where the
result of the match is what is returned by the func-
tion. Furthermore, this means that we could change
line 28 of Figure 1 to simply be ‘res’ and the meaning
of the program would remain the same.

Another notable difference from C is that rust is
fully immutable by default. In order to use an object
mutably one must declare it mut, as is done in line
17 of Figure 1. One must do this even for function
arguments, which is why there is a mut before the
argument lst on line 6 of Figure 1. This immutable
default extends to pointers, which must be declared
&mut to be used mutably.

Rust has a syntax for declaring structures and enu-
merations that is very similar to C. One of the main
differences is that enumerations can have data asso-
ciated with them. In Figure 2 on line 30 we see the
definition of an enumeration where one of its vari-
ants (User) has data of the type Account associated
with it. This data can be used in match expressions,
such as on line 42 of Figure 2. In rust there are
also traits, which are similar to Java interfaces and
may have default function definitions associated with
them. Using traits it is much easier to create generic
functions than it is in C. For example, the quicksort
implementation in Figure 1 only requires that the
objects being sorted implement the Ord trait, mean-
ing they have a total ordering. We can see the Id
trait be defined on lines 2-11 of Figure 2, it is imple-
mented for the Account type on line 20 and for the
Commenter type on line 38. Both enumerations and
structures can have methods implemented on them
directly or through traits. The Commenter trait has
a get messages function implemented on it on line 26
of Figure 2. Rust will transparently redirect function

calls through virtual method tables (vtables)5 when
appropriate to allow handling objects as trait point-
ers. This also makes it much easier to write generic
code, as well as to hide implementation details in a
much more straightforward way than is possible in C.

Rust also supports declaring anonymous functions.
Anonymous functions are declared by having a list of
arguments surrounded by pipes (|) followed by a sin-
gle expression. Type annotations similar to those on
normal functions are allowed, but optional. The re-
turn and argument types will be inferred if they are
absent. An anonymous function is used on line 14
of Figure 1. On this line it is used to distinguish be-
tween items less then the pivot so that the partition
function can split the items in the list into two lists.

Figure 1 also makes use of the rust macro system.
In rust macros are pieces of code that transform the
abstract syntax tree (AST)6 at compile time, rather
than just the raw text of the source code as C macros
do. Macros may be implemented using a special
macro Domain Specific Language (DSL)7 or by writ-
ing a compiler-plugin for rustc[5]. Both systems
allow the creation of hygienic macros, where there
can be no name collision and the meaning is (mostly)
independent of the context it is used in. The macro
DSL does not allow any compile-time computation
beyond pattern matching and has no explicit quasi-
quote operator8, however compiler plugins may do
both these things. Macros are identified by the
exclamation-mark (!) that ends their name. They
may expand to be either statements or expressions
and may (generally) be nested. In Figure 1 I make
use of the vec![...] macro, which creates a Vec<T>
filled with the arguments given to the macro, on lines
34 and 40.

Rust also has fairly robust support for pattern

5VTables are structures containing function-pointers used
to allow types to specify different implementations of standard
functions for their use. They are similar to interfaces in Java.

6 An AST is a representation of a program as a tree, with
the nodes and edges representing the syntactic elements of the
language. The tree as a whole represents the parse of the pro-
gram being examined. It is used as the representation of a pro-
gram during compilation, optimization, and macro-expansion.

7 A DSL is a programming language created for some spe-
cific purpose. It is usually quite well suited for use in this
domain but is less powerful or more difficult to use than more
general languages. Some commonly used DSLs are the regular-
expression syntax used by perl, the Hyper-text Markup Lan-
guage (HTML) commonly used for creating web-pages, and
the typesetting language LATEX.

8 A quasi-quote is an operator that turns a given piece of
text into an AST for the text. Using a related operation called
“unquote” one is allowed to embed other ASTs as it does so.
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matching. In ‘let’ statements one can ‘de-structure’
objects and tuples into their constituent parts, Fig-
ure 1 does this on lines 9 and 14. On line 14 we de-
structure the two-tuple returned by partition into
the two lists that make it up. On that line we also
need to specify that we want Vec< >s to tell the com-
piler which variant of partition to use. It is also
possible to do this with enums, although there one
must either use an if-let, as Figure 1 does on line
9, or use a match statement to cover all possible vari-
ants, as is done in the implementing of username in
Figure 2 in lines 41-44.

1.2.2 Ownership

Another major feature of rust is its ownership sys-
tem. In general, every object in rust has some, spe-
cific owner. The owner of an object is the one that
is responsible for destroying the object when it goes
out of scope. Ownership can be transfered by ei-
ther passing the object ‘by value’ (without using a
pointer) to another function or by returning an ob-
ject from a function. When ownership is transfered
in this way the object is said to be ‘moved’ to its
new owner (although actual memory might or might
not be moved). Once ownership has been transfered,
the original owner of an object may no longer di-
rectly use the moved object, it must obtain a pointer
from the new owner if it is to do anything. A trans-
fer of ownership can be seen in Figure 1 on line 43
where ownership of the variable lst is passed into the
quicksort function. If one attempted to make use of
lst after this line the compiler would prevent it by
saying that the lst variable has been moved out of
scope. In the quicksort function itself the ownership
of the variable res is transfered up the call stack by
returning it on line 28. The fields of an object are
said to be owned by the object that contains them.
This forms a tree of ownership, the root of which is
either in some stack frame of the current thread or in
a statically allocated object.

There are, of course, some exceptions to this sys-
tem, such as reference counted pointers, weak ref-
erences9 and mutexes. These types are all im-
plemented using unsafe behavior, which allows one

9 Reference counted pointers are special pointers that allow
objects to have multiple, concurrent, owners. The object ref-
erenced will only be destroyed when all references to it are de-
stroyed. Weak pointers are related to reference counted point-
ers. Weak pointers allow one to have a reference to an object
contained in a reference counted pointer without contributing
to the reference count of said object. The rust standard library
implements these types as Rc<T> and Weak<T> respectively.

to ignore the rust type checking and safety system.
This makes sharing data between threads difficult, as
there is no obvious owner for shared data. Further,
when sharing data like this, one needs to ensure that
all references stay valid as long as they are in use. I
discuss some of the ways I dealt with this problem in
subsection 2.4.

1.2.3 Type & Borrow checker

The rust type checker is a fairly standard statically-
typed language checker with type-inference. One in-
teresting feature of the rust type checker is that it
does type inference in multiple directions. It will
choose which variant of a function to use based on
both the types of its arguments and the (declared)
type of its return value. For example in Figure 1 I
need to specify that less and more are both Vec or
else the type checker would not be able to determine
which version of partition to use. It is possible to
use the underscore ( ) to mark places where the type-
inference system should supply the types, as is done
in Figure 1 on line 14. This is done by default when-
ever one has a let statement where the type is not
supplied, such as line 17 in Figure 1.

The other major feature of the rust checking sys-
tem is that it takes into account the lifetimes of data.
In rust whenever one creates an object the checking
system automatically gives it a lifetime. An objects
lifetime is from when it is created until when it is de-
stroyed. The lifetime of an object can change when
it is moved by value but is otherwise constant. Life-
times may be given names like any other generic, or
one may use the special ’static lifetime, as shown
in Figure 2. The name of a lifetime is always marked
with an unmatched single quote (’). The borrow
checker of rust makes sure that the lifetimes of all
objects in a rust program are consistent. It works
by whenever a pointer is created to an object that
pointer retains the same lifetime as the pointed to
object. Rust will then ensure that no pointers outlive
the lifetime of the object they point to and that the
pointed to object cannot be moved (have its own-
ership transfered) as long as there is pointers of it
still (potentially) alive. For example, in Figure 2 on
line 10 we specify that the lifetime of the returned
string is the same as the lifetime of the object whose
screenname function is being called. The compiler
will prevent one from using the string returned by
this function anytime after the object that created it
is destroyed. Lifetimes can also be incorporated as
part of a type, allowing one to hold these pointers
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inside of structs and enums. All of these checks are
done purely at compile time, incurring no additional
runtime overhead.
Rust does allow one to get around these checks if

necessary. To do so one uses the unsafe environment.
While in an unsafe environment one may do several
things normally forbidden by the rust type and safety
system. These include dereferencing raw memory and
doing unchecked type casts.

2 Reenix

Reenix is the name of my project to reimplement as
much of the weenix OS in rust as possible. I choose
to split this work up in much the same way the orig-
inal weenix project is split up. Of the five sections
of weenix (see subsection 1.1), I was able to fully im-
plement the first two, PROCS & DRIVERS. I was also
able to finish a non-trivial part of the VFS project
and made some of the auxiliary support code that is
needed to complete S5FS & VM. In doing this I also
had to convert and rewrite many large pieces of the
weenix support code into rust. The results of my
project, including all code and patches to the origi-
nal weenix project, can be found on Github10.

2.1 Organization

In building reenix I used the rust language’s con-
cept of crates. Rust crates are packages of related
code that can be compiled into libraries, or (in some
cases) binaries. They are generally identified by find-
ing a folder with a ‘lib.rs’ file in it, which is the
standard (though not obligatory) name for a crate-
root. For reenix I ended up dividing the project into
nine crates that are entirely new. There are also three
compiler plugins that I used in this project, two of
which I created. Finally, I make use of several stan-
dard library crates and even created a version of the
standard library11 that only uses crates available for
reenix. Overall reenix makes use of 18 crates, of
which 12 of them are entirely custom.

Many of the crates in reenix mirror the organiza-
tion of the weenix project. The memory-management
architecture is contained in the mm 12 crate, the pro-
cesses related code is in the procs 13 crate, and so
on. There are, however, several crates which have no
real analog in weenix that are present in reenix.

The first and most basic of these is the base crate.
This crate holds a large and rather diverse collection
of types and traits. This is partly to make it possible
for crates to know about some of the types of other
crates further down the dependency tree. By declar-

10https://github.com/scialex/reenix (April 2015)
11 The rust standard library is made up of a large number of

separate crates which are all joined together in a single crate
called std. This is commonly called the standard library facade
by the rust community. The std crate is treated specially by
the compiler which automatically includes some modules from
it in every file, allowing one to use the standard rust types
without explicitly importing them.

12See subsection 2.3
13See subsection 2.4
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ing certain traits in this crate we can allow them to be
used in all crates, even ones which are dependencies
of where the trait is implemented. Another function
of this crate is to hold the definitions for many of
the basic data types used in reenix, such as errnos.
I also placed the ‘dbg!’ macro14 in this crate so it
could be used everywhere without difficulty.

Another new crate is the (somewhat badly named)
startup crate. This crate mostly contains stubs to C
code that implements functions related to ACPI, PCI,
and GDT15, used mostly during boot, hence its name.
These are all very tightly related to the actual hard-

ware and managing them requires the ability to per-
form complicated bit-twidling and memory manipu-
lation, something rust could be better at. It also
includes an implementation of thread-specific data
functions. These were mainly put here, and indeed
created at all, due to the fact that implementing the
rust stack overflow detection16 for reenix threads
made them fairly trivial.

The last totally new crate is the umem crate. This
crate is not fully finished and currently holds some
of the mechanisms needed to implement user-space
virtual memory and page-frame caching. In weenix
these are part of the mm hierarchy, however to do
that with rust would require that we only have one
crate and would make using the rust standard library
much more difficult.

2.2 Booting

One of the first challenges I had while writing reenix
was getting the system to boot at all. Weenix (at the
time I started) made use of a custom 16-bit assembly
code boot-loader. This boot-loader, unfortunately,
did not support loading any kernel images larger than
4 megabytes. This turned into a problem very quickly
as it turns out that rustc is far less adept than gcc
at creating succinct output. In fact, I was hitting this
problem so early I was barely able to make a “Hello
World” before having to stop working on rust code.

Fixing this problem required rewriting most of the
early boot code, all of which was x86 assembly. It
also required rewriting parts of the build system

14‘dbg!’ is the debug printing macro. It prints out text to
the standard output of the host computer, aiding debugging.

15 ACPI is the Advanced Configuration and Power Interface,
it controls basic power-management functions. PCI is the Pe-
ripheral Component Interface, it controls the use of peripherals
such as video cards, keyboards and mice. GDT is the Global De-
scriptor Table, it affects how we address memory.

16See subsection 2.8

to create boot disks that used GRUB17, a common
Linux boot-loader, and changing the boot sequence to
support the multiboot specification18. This, in and of
itself, was not terribly difficult, though the fact that
this was absolutely critical to making any sort of at-
tempt to do this project does show that some of the
simple hacks that are possible with C cannot be done
with rust. With C it is perfectly feasible to keep even
a moderately complicated kernel like weenix’s down
under 4 megabytes, and in fact almost nobody has
ever run into this limit during CS169’s history. With
rust, however, this limit was blown through almost
immediately. While it is most likely that this is more
to do with the rust compiler’s optimizations (or lack
thereof) than the language itself, the fact is that op-
timizations matter to any software developer. Rust’s
relative lack of them when compared to more estab-
lished languages must be considered.

2.3 Memory & Initialization

Another early challenge I faced was getting mem-
ory allocation working. For many reasons, includ-
ing feeling it was rather outside the scope of this
project, I choose to make no attempt to implement
a memory allocator in rust and instead use the ex-
isting weenix allocators. This led to a small problem
since the weenix allocators are slab allocators, which
allocate fixed-size data structures from contiguous
slabs of memory. These types of allocators are ac-
tually extremely useful for kernel tasks and are used
in many real-world kernels, such as FreeBSD[11] and
Linux[3]. They are also commonly combined with ob-
ject caching schemes[1, 6], although weenix does not
use such a scheme. Since there are generally only a
few structures with known sizes that need to be allo-
cated at any one time this works quite well for most
OSs.

The only problem is that rust was built with the
idea that it will be used with a malloc style memory
allocator. This kind of allocator is rather hard to im-
plement using slab allocators since malloc must be
able to allocate buffers of any size. One needs to cre-
ate some system where the malloc function will find
a suitable allocator from the many different sizes of
slab allocators. There has been some debate about
adding support for custom allocators to rust, which
could allow one to use slab allocators easily, but this
has been postponed until after rust 1.0 comes out at

17https://www.gnu.org/software/grub/ (April 2015)
18https://www.gnu.org/software/grub/manual/multiboot/

multiboot.html (April 2015)
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least[7]. Further, the language and the compiler are
also built with the idea that allocation is, in some
sense, infallible. In an operating system kernel, this
is an impossible standard to keep. This is, unfortu-
nately a rather deep problem as well since the rust
compiler has these assumptions built into it. I discuss
this problem in more detail in subsection 3.3 bellow.

In order to support this I ended up needing to write
a rather complicated shim around the weenix alloca-
tors so as to support the rust allocator model. I
ended up making code that would search through
all known allocators whenever memory was allocated
and select the best one available to supply the mem-
ory. This though created problems as it would be
useful to still have allocators perfectly sized for com-
mon types, to ensure good space utilization. To do
this however we need to get a full list of all allocators
that we will commonly be using. This required me to
create a somewhat strange multi-stage initialization
scheme for boot. I needed to have a first stage of
initialization where allocation is not yet set up. Dur-
ing this phase each piece can request allocators be
reserved for them, or do other startup related tasks
that do not require allocation, including most initial-
ization of the C parts of the project. This is added
onto the other two phases of the initialization tap-
dance from weenix. Once this is done we do all the
other initialization that is possible before we are run-
ning in a real thread context, then we do the final
initialization once we have entered the idle-process.

2.4 Processes

In this section I will talk about how processes are cre-
ated, controlled and stopped, covering the two most
basic functions of a process system. Next, I will talk
about how inter-thread synchronization is performed
and maintained. Finally, I will examine the reenix
scheduler and explain how it is made and behaves.

The first major part of reenix that is also im-
plemented in the CS169 weenix project is PROCS, en-
compassing process-control, scheduling and synchro-
nization. I chose to follow the basic weenix design
for my process structure. There is a separation be-
tween a process and a thread, where there is a hier-
archy of processes each of which has threads of exe-
cution. Threads and processes are represented sep-
arately; each process has at least one thread. As in
standard unix, we keep track of the parent-child re-
lationships among processes and will move orphaned
processes to the init processes. Processes hold infor-
mation about the child processes and memory map;

1 pub struct KProc {
2 /// our Process ID
3 pid : ProcId ,
4 /// Process name
5 command : String ,
6 /// Our threads
7 threads : HashMap <u64 , Box <KThread >>,
8 /// Our children
9 children : HashMap <ProcId ,
10 Rc<ProcRefCell <KProc >>>,
11 /// Our exit status
12 status : ProcStatus ,
13 /// running/sleeping/etc.
14 state : ProcState ,
15 /// Our Parent
16 parent : Option <Weak <ProcRefCell <KProc >>>,
17 /// Page directory
18 pagedir : PageDir ,
19

20 /// wait -queue for waitpid
21 wait : WQueue ,
22 }

Figure 3: The process structure in reenix is very
similar to how it is in weenix, though it make use of
HashMaps to store the children and threads instead of
the interned lists of weenix

a slightly annotated definition of the process struc-
ture can be seen in Figure 3. If I had gotten farther
on implementing it, processes would also hold infor-
mation on open files and the current directory which
is shared by all threads. Threads hold information
about what the process is currently doing, are what
the scheduler works with, may block and has a stack.

2.4.1 Control & Creation

Reenix has a very simple process control model. One
may create a process at any time by calling the
KProc::new function and giving it a function to be
invoked by its first thread. This function returns the
new process’s unique id number, or a value identifying
the error if something went wrong. Once this func-
tion has been called, the created process will continue
running until either all threads finish or it explicitly
stops itself. Currently reenix does not support mul-
tithreaded processes. A thread can therefore only be
created by creating a process. This restriction is cur-
rently there for convenience. The design of processes
and threads is made to allow one to switch to hav-
ing multi-threaded processes rather easily. There is
no facility analogous to kill(2) in reenix, one may
cancel a thread or process, which might wake up a
thread if it is sleeping and prevent it from sleeping
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again, but there is no way to force a thread to exit,
threads exit only under their own volition. Finally
any process can wait for its children to exit, through
the use of a waitpid(2) like function. Processes may
wait either for any child process to exit, or for a spe-
cific one. Waiting for a process that has already ex-
ited to finish occurs without sleeping.

A major challenge in implementing all of this was
simply the question of ownership of the process struc-
tures. The most obvious answer is that each process
should own the process structures of all of its chil-
dren. This mirrors the process tree we are creating
with waitpid and is rather simple to implement. If
we do this we need to deal with the fact that each
process must keep track of its parent, to allow one to
notify a parent sleeping in waitpid. Furthermore, it
is important for usability that we not need to pass the
current thread variable around all the time, therefore
we need to have some way to turn an arbitrary pro-
cess id into a process structure that we can cancel or
query. In order to allow all of these uses we handle
process structures mostly through reference counted
Rc<KProc> pointers, with all non-owning references
being Weak<KProc> weak references19. This lets us
leave the owner of a process structure as its parent
while still letting us access it safety since rust will
not allow one to access a Weak<T> without checking
that it is still present and getting a full reference to
it.

A benefit of using rust here was that scope-based
destructors allowed me to simplify the code some-
what. These destructors allowed me to define cleanup
code that is run whenever an object goes out of scope,
simplifying error cleanup. For example, I could gen-
erally just return an error code if creating a new pro-
cess failed for some reason, knowing that all the tem-
porary values, including the new process structure,
would be destroyed. This meant I did not need to re-
peat cleanup actions in multiple places or use a ‘goto
error’ based cleanup system.

2.4.2 Synchronization

Since reenix is a strictly single-core operating system
we can have a rather simple synchronization scheme.
All synchronization in reenix is based around wait
queues. A wait queue is a simple synchronization
primitive similar to a condition variable. Anything
may choose to wait on a wait queue and they will go
to sleep until some other thread signals the queue.

19See subsubsection 1.2.2

These functions take care of masking off interrupts
when they are being used, preventing interrupts from
occurring while a thread is going to sleep or being wo-
ken up. Wait queues are implemented with a struc-
ture called a KQueue. In my implementation one may
only wake-up the entire queue at once, furthermore
one may optionally go into a sleep such that being
canceled will cause the thread to wake up. Using
this it is fairly straightforward to create all the other
synchronization constructs one could desire, such as
Mutexs, or condition variables. In order to make these
structures more generic I also created a pair of traits
which encapsulated this behavior.

Like with process control above, implementing this
form of synchronization led to some tricky questions
of ownership. This is because, in the end, a wait
queue is simply a list of threads that are currently
paused. The wait queues clearly should not be the
owners of the threads in any sense and should simply
have temporary references to them. Unfortunately
the rust lifetime system gets in our way since there
is no clear lifetime we could give to the references
that is consistent across all threads. This is because
lifetimes in rust are always related to the call stack of
the current thread of execution. Rust assumes that
everything that any given thread can see is either
(a) going to be around forever or (b) was created in
some particular function call in the current call-stack
and will be destroyed when we move through said
frame. This makes working with references which,
in some sense, live on entirely separate stacks very
tricky. Since each thread has a totally separate life-
time from all of the others there is no way for rust to
prove that the references are safe to use 20 and there-
fore it will not allow us to write the queue in this way.
One possible solution would be to use weak references
as we did with processes in the previous section, and,
if I were to do this project again, I would likely do just
that. Instead, I chose to exploit another one of the
nice features of rust which is the ability to explicitly
ignore some of rust’s safety checks. I therefore held
the queued threads as simple pointers, casting them
back to threads when they are removed. This solu-
tion is functionally equivalent to the naive method
discussed above and is just as safe. It also conve-
niently avoids the extremely heavyweight nature of
the weak-reference solution, by avoiding the need to
keep around a reference counted pointer simply so we
can get sleeping working.

20See subsection 3.2
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2.4.3 Scheduling

The reenix OS employs a simple, First-in-First-out
scheduler. It maintains a simple list of running
threads. Each thread keeps track of its state in a
special Context structure that holds the values of its
instruction pointer and other registers, as well as the
thread-local-storage data.

This naturally runs into many of the same issues
that the wait queues do in terms of ownership and it
solves them in the same way. One other, somewhat
strange, issue I had was with the compiler optimiz-
ing away many of the checks in the loop the scheduler
performs when there is no thread to run immediately.
It would believe that since it had the only mutable
reference to the list there was no way anything else
could modify it. Unfortunately, this list is often mod-
ified by interrupt contexts and must be checked each
time. While such an error could (and, with optimiza-
tions turned on, does) happen in C it is much more
difficult to fix in rust. In C, one must simply mark
the variable being used as volatile and the compiler
will stop attempting to optimize its access. To do the
same in rust, one must be sure that all reads of the
variable are done through a special marker function
to read the variable.

2.5 Drivers

The next major part of reenix is to add basic de-
vice drivers. I chose to follow the weenix project and
have an (emulated) ATA hard disk driver and a ba-
sic TTY21 driver stack. This allows one to have
a (small) amount of interactivity with the OS, eas-
ing testing and analysis and also allow one to have
persistent storage at some point in the future. Fur-
thermore, both these drivers are rather simple, well
understood, and well documented, easing the process
of making them from scratch.

In order to make the use of drivers easier in other
parts of the kernel I created a basic trait to en-
capsulate their basic functions. They can be seen in
Figure 4. They nicely abstract the way one uses in-
put/output devices inside the kernel. Furthermore,
they illustrate a nice feature of rust in that one
can reimplement the various Device traits multiple
times with different type arguments. This is ex-

21 TTY (sometimes called tele-typewriters or text termi-
nals) are a common interface for unix-like operating systems.
They provide users with an area where they type commands
and other data as text and the programs may write text in
response.[6]

tremely useful with things like memory-devices such
as /dev/zero, which one might want to either read
whole blocks of memory from or read character by
character.

This section will explore the implementation of
each of the drivers I created for reenix. It will also
examine any of the problems I faced while creating
them.

2.5.1 TTY Stack

The TTY subsystem in reenix is split into five sepa-
rate parts. At the lowest level is the keyboard driver,
which allows one to receive input from the outside
world, and a simple display driver, letting one print
characters for the outside world. The display driver
is a simple VGA mode 3 text video interface, avoid-
ing the trouble of creating a real video driver that
needs to draw everything to the screen. The key-
board driver is implemented as a standard PS/2 key-
board and supports all of the standard keys and some
of the meta-keys. Both of these are implemented fully
in rust but are rather simple ports of the C versions
included with weenix.

Using the screen driver I created a simple vir-
tual terminal driver. A virtual terminal is a com-
mon unix abstraction that represents a virtual screen
with a keyboard. These virtual terminals implement
scrolling and a cursor that keeps track of the next
place to write to. This is another mostly straight
port from C to rust.

Finally, above virtual terminal and keyboard driver
I created the TTY driver and line-discipline. These
are the actual drivers used in running a TTY. The
TTY driver receives interrupts from the keyboard,
passes them to the line discipline, which might pro-
cess and record them, then echoes them out to the
screen. When the tty is written to it uses the line
discipline to translate the characters so they can be
displayed and then passes them to the virtual termi-
nal. When the tty is read from the next full line is
returned, or the current thread goes to sleep until a
full line is typed.

There were no major challenges that needed to be
dealt with regarding the reenix design during this
part. About the only somewhat difficult challenge
was that I was unable to find any clean way to switch
between different virtual terminals. I ended up hav-
ing to just update a pointer so that the interrupt
subsystem could know which TTY to send input to.
Though this is also a problem in the C version, the
fact that this was the best way to solve this prob-
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1 /// A device capable of reading in units of ‘T‘.
2 pub trait RDevice <T> {
3 /// Read buf.len() objects from the device starting at offset. Returns the number of objects
4 /// read from the stream , or errno if it fails.
5 fn read_from (&self , offset: usize , buf: &mut [T]) -> KResult <usize >;
6 }
7

8 /// A device capable of writing in units of ‘T‘.
9 pub trait WDevice <T> {

10 /// Write the buffer to the device , starting at the given offset from the start of the device.
11 /// Returns the number of bytes written or errno if an error happens.
12 fn write_to (&self , offset: usize , buf: &[T]) -> KResult <usize >;
13 }
14

15 /// A Device that can both read and write.
16 pub trait Device <T> : WDevice <T> + RDevice <T> + ’static {}
17

18 /// A device capable of reading and writing at byte granularity.
19 pub type ByteDevice = Device <u8 >;
20

21 /// A device capable of reading and writing at block granularity.
22 pub trait BlockDevice : Device <[u8; page::SIZE]> + MMObj {}

Figure 4: The Device traits encapsulates a hardware device capable of reading and writing fixed size data

lem I could come up with is disappointing, since it
is very much something that rust discourages. Ac-
tually switching the interrupt handler would be an-
other possible solution but doing so seemed incredibly
heavyweight, especially since the different functions
would be almost identical. Furthermore, I am ac-
tually unsure what the implications of changing out
interrupt handlers while handling an interrupt would
be, and, as far as I am aware, no operating system
changes out interrupt handlers as often as this would
have to.

2.5.2 ATA Disk

The ATA disk driver in reenix is a fairly simple block-
device driver. It is capable of reading and writ-
ing specified blocks to the disk, including performing
multiple consecutive reads and writes at once. To
do this the driver makes use of direct memory access
(DMA). When using DMA the driver writes to spe-
cific memory locations which the memory bus uses to
send instructions to the disk[6]. The disk then per-
forms the specified operation, loads the result into
a (user specified) memory location, and triggers an
interrupt on the CPU.

As this whole process is fairly straightforward there
are few differences between my rust version and the
C version that one creates in CS169. The main differ-
ences being that rust allowed me to move away from
somewhat arcane macros in controlling the DMA de-

vice.

Other than figuring out what the C code was doing
in order to replicate it, the main difficulty I had was
rust’s relative lack of alignment primitives. To use
DMA one needs to deal with a data-structure called
the Physical Region Descriptor Table (PRD). This
table tells the PCI bus where the memory that the
DMA is going to be using is. Because this table is so
inextricably linked to the hardware it has very strict
alignment requirements; it must be aligned on a 32
byte boundary. In C this is not a very large prob-
lem; one can simply statically allocate the table with
an attribute about its alignment, or just dynamically
allocate a buffer using an aligned allocator or just
enough space to guarantee one can get the alignment.
In rust this is a much more challenging problem for
several reasons. First, there is no good way to force
alignment of data in rust, the current recommenda-
tion is to put a zero-length array of a SIMD type
to emulate it[13]. Second, the reenix allocators can-
not guarantee alignment in any meaningful sense so
it is a moot point since I could not get good align-
ment anyway. I could allocate these statically but I
have been trying to avoid doing this as rust does not
make doing so simple. Furthermore, since the CPU
I am compiling for lacks support for SIMD types I
am unsure if even the recommended approach would
work. In the end I chose to over-allocate and man-
ually align the data whenever I use the PRD table,
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which is rather cumbersome, error-prone, and com-
plicated.

2.6 KShell

Once I had the TTY driver finished one of the first
things I worked on was a simple command shell,
which I called the KShell. This allows one to interact
with the operating system in a way that was previ-
ously impossible, dynamically selecting tasks using
the keyboard. With the KShell it became so much
easier to test and examine the operating system. It
is difficult to overstate how useful this is for testing,
suddenly it was possible to simply experiment with
different sequences of commands without recompil-
ing. Furthermore, without the KShell it would have
been much more difficult to test the TTY driver. Fi-
nally, since I have not yet implemented any form of
userspace, a kernel-space shell is the only possible
way we could interactively control the system.

Like most command shells, the KShell is based on a
simple read-evaluate-print loop. There are a number
of commands that the KShell is able to use, including
a parallel command to run other commands in their
own threads. Each of the commands is written as a
rust function which runs the command and returns
a value indicating whether it succeeded.

One of the most interesting things about the
KShell is how similar it is to a generic REPL shell
written in rust. In many ways it is implemented in
almost exactly the same way one would in normal
rust; the types are the same, the loops are the same,
etc. This is rather interesting since it shows just how
much of the rust standard library can be used with-
out modification in reenix. For most higher-level
languages, the lack of a real runtime when running
in kernel mode would severely constrain the sort of
code one could write here.

Furthermore, while writing the KShell it struck me
how much easier writing it in rust seemed to be than
doing the same thing in C. By writing it in rust I was
able to take advantage of features such as easy-to-use
list and mapping types and being able to make use of
rust’s high level string routines. These removed some
of the more annoying aspects of creating a working
command shell that would have been present in C.

2.7 Virtual File System

Once I had finished working on getting drivers work-
ing I next started to work on creating a virtual file
system for reenix. A virtual file system (VFS) is a

common abstraction in unix-like operating systems
first created and popularized by Sun in the mid-
1980s[8]. It is designed to smooth over the differ-
ences between various on-disk and network file sys-
tems. The VFS defines common interfaces for all the
major file system manipulation and interaction rou-
tines, such as searching a directory, creating a file or
directory, or opening, reading, and writing to files.
It also commonly defines a data block cache to al-
low the caching of reads to underlying block devices
by the file systems underneath it.22 Both weenix and
all major unix-like operating systems today make use
of a VFS-like interface in order to ease the use and
creation of file systems.

Unfortunately, due to time constraints, I was un-
able to get very far in implementing a VFS for reenix.
In order to allow incremental testing of components
I decided to follow the example of weenix and imple-
ment a rather simple, in memory, file system, called
RamFS, to test some of the VFS specific features before
moving on to implement the much more complicated
S5 file system. I was, however, able to implement
parts of the block-device and caching layer that S5FS
would have used to access the disk, and create a rea-
sonably complete RamFS.

This section will examine each of the three parts of
VFS that I was able to at least get a start on complet-
ing. We will first look at the design of the VNode trait
and the decisions that went into it. Next, we shall
look at the RamFS test file system, which I was able to
mostly complete. Finally, we will examine the page-
frame, memory object, and their attendant caching
system which I was only able to get a small start on.

2.7.1 VNodes

The major data type in the virtual file system is the
VNode. A VNode is the VFS representation of what a
file or other file system object is and what it can do.
It consists mainly of a large number of functions that
will do the main file system operations on the VNode.
Since it is mostly defined by the functions it imple-
ments, in reenix I made the VNode be a trait. VNode’s
generally have multiple, concurrent, owners who all
make use of the underlying file data. In weenix this is
implemented by performing manual reference count-
ing on the VNodes, which is one of the most difficult
and error-prone parts of the assignment.

A part of the reenix VNode trait can be seen in
Figure 5. One thing to note about this is that I make

22In weenix this cache is actually implemented by students
during the S5FS project that follows VFS[12].
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1 pub trait VNode : fmt::Debug {
2 /// This is only here so that the type system works out. Needed b/c no HKT
3 type Real: VNode;
4 /// What type of vnode operations will create/get. This must be clone.
5 /// We want to say it is borrow so that we can have this be a wrapper that deals with
6 /// ref -counting.
7 type Res: Borrow <Self::Real > + Clone;
8 fn get_fs (&self) -> &FileSystem <Real=Self::Real , Node=Self::Res >;
9 fn get_mode (&self) -> Mode;

10 fn get_number (&self) -> InodeNum;
11 fn stat(&self) -> KResult <Stat > { Err(self.get_mode (). stat_err ()) }
12 fn len(&self) -> KResult <usize > { Err(self.get_mode (). len_err ()) }
13 fn read(&self , _off: usize , _buf: &mut [u8]) -> KResult <usize > {
14 Err(self.get_mode (). read_err ())
15 }
16 // ...
17 fn create (&self , _name: &str) -> KResult <Self::Res > { Err(self.get_mode (). create_err ()) }
18 fn lookup (&self , _name: &str) -> KResult <Self::Res > { Err(self.get_mode (). lookup_err ()) }
19 fn link(&self , _from: &Self::Res , _to: &str) -> KResult <()> { Err(self.get_mode (). link_err ()) }
20 // ...
21 }

Figure 5: The VNode trait

use of rust’s type system to represent the fact that
we will often not be dealing with VNodes directly but
instead with wrappers that handle reference counting
for us. We say that the result type of functions like
create must be usable as some type of VNode. This
allows us to have each separate type of file system
object23 implement VNode and yet return a standard
enum that might be any of these file system objects.
By requiring that this result type is copyable (the
Clone trait), we hide how the backing file data is
shared between VNodes which reference the same ob-
ject, allowing the reference counting to take place be-
hind the scenes. We can simply return a type that is
wrapped by some reference counter that makes sure
we remove the VNode when it is no longer referenced.
For example in RamFS the result type is Rc<RVNode>.
This prevents a whole class of errors that is one of
the trickiest parts of VFS in weenix, by removing the
need for manual reference counting.

2.7.2 RamFS

RamFS is the name of a testing-focused, in memory,
file system used to test ones VFS implementation in
weenix and reenix. This “file system” implements
all the calls needed to be used by VFS without actu-
ally being backed by a disk. In weenix this system is
provided as support code to enable one to test VFS
without having to be concurrently working on creat-

23For example, directory, file, device, etc.

ing the S5 file system.

I actually made several attempts to implement
RamFS before coming up with its final design.

My initial design was to do a straight port from
C to rust. I could not simply use a stubbed version
that called directly into the already finished C code
because it relied on a lot of the other weenix support
code, such as the VNode representation. This turned
out to be much more difficult than I had thought it
would be.

The C RamFS is mostly implemented just as a nor-
mal file system is, but with a massively simplified
system for keeping track of allocated file nodes and
no system for allocating blocks of memory (all files
and directories get exactly one block). This means
that, for example, directories are implemented as an
array of bytes which is cast to an array of directory
entries. While this does mean that it is very similar
to real file systems in this way, it is a problem since
rust does not make working with raw, untyped, stor-
age as simple as C does. In C one would simply cast
the array and work with it as the array of (possi-
bly uninitialized) directory entries that it is, doing
so in rust is rather cumbersome. While this prob-
lem would need to be handled eventually with S5FS
(probably through the use of a binary-serialization li-
brary) I decided that, in the interests of time, I would
take a simpler route.

My second design for RamFS was to create as sim-
ple of a mock file system as I could. I abandoned
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any notion of creating something similar to a real file
system in implementation. Each type of file system
object is a different type, each directory is simply a
map from file-names to nodes, reference counting is
done through the standard-library Rc<T> type and so
on. This did make the implementation far simpler,
allowing me to quickly finish most of it in a short
time. Unfortunately by the time I had gotten this
done there was little time to work on the rest of VFS
beyond what I had already done. It was during this
that I made the final design decisions surrounding
how VNodes work.

2.7.3 PFrames & MMObjs

When I began working on VFS I had initially not
planned to create the RamFS file system and had there-
fore started by creating much of the support code that
is needed by S5FS. This support code contains the
structures necessary to implement the block-cache
needed by most file-systems, which RamFS does use.
These systems are often considered a part of the vir-
tual file system subsystem by operating system ker-
nel projects, although in weenix they are not im-
plemented until the S5FS project. This system is
made up of two major components, MMObjs, which
are an abstraction of a data source that can pro-
vide (cacheable) pages of data, and PFrames which
are pages of data from an MMObj which can be cached
and updated. A PFrame is conceptually owned by
its source MMObj and is, in some sense, simply a cur-
rent view into that MMObj. In fact though, PFrames
are cached separately from MMObjs, and the MMObj is
mostly responsible for simply filling in the PFrame and
writing the data back when the PFrame is destroyed.
In reenix these pieces are not fully completed, al-
though the interfaces they expose are fully written.

The basic MMObj trait can be found in Figure 6.
One interesting thing to note about this design is
that none of these functions is ever called directly
by file system driver code other than the PFrame sys-
tem. When a file system needs a page of memory
from an MMObj the basic call structure would be to
request a PFrame of the given page number on the
MMObj. This will first search the global PFrame cache
to see if it is already there, returning it if so. Other-
wise it will create a new PFrame and fill it with data
using the MMObj. The caller may then make use of
the PFrame however it wants since they are reference-
counted preventing them from being removed while
in scope. When a PFrame goes out of scope it will
check to see if it is reachable from anywhere, either

as a reference or from its MMObj. If it is not (or if
there is little memory left) it will check to see if it
has been modified and if so have the MMObj write it
back.

The most important challenge I faced while creat-
ing this was convincing myself that the call structure
is actually what I want. For the first time many calls
are moving through traits that hide implementation,
making it difficult to determine what is going to be
happening. Another challenge I have been having is
that this system is very difficult to test in isolation.

2.8 Other Challenges

As I was working on reenix there were many chal-
lenges and decisions that I needed to make that were
not part of any single piece of the project. These chal-
lenges included implementing rust stack-overflow de-
tection, implementing thread-local-storage and sim-
ply getting the project building at all. The difficul-
ties I had in doing these, and the need to do them at
all, are mostly due to the differences between C and
rust.

2.8.1 Stack Overflow Detection

One of the nice features that rust has over many
other (commonly) compiled languages such as C is
it supports built-in stack overflow detection. This
means it is able to detect stack overflow even if there
is no hardware memory protection available. Rust
uses the LLVM24 provided method of doing this by hav-
ing all subroutine calls check a thread-local variable
that holds the address of the end of the stack. On
each subroutine call the function use this to check if
there is enough space on the stack to hold all of its
local variables. Specifically, it will check the value at
offset 0x30 within the %gs segment25 on x86 systems.

Since this feature makes use of (implicit) thread-
local variables, it requires specific runtime support
and setup to work.

24 LLVM is a compiler project and toolchain that provides a
standard intermediate representation which may be targeted
by other compilers[9]. This is then turned into binary code for
several different machine architectures. It is used by the rust
compiler to create the final binary code for a rust program.

25 Memory segmentation is a method of addressing on x86
and related processors. It was originally developed to allow 16
bit processors address up to 24 bits of memory. It works by
having segments that start at a particular address and extend
for a specified number of bytes. All memory accesses are per-
formed relative some segment, either specified in the assembly
code or a default one. The segment definitions are held in the
global descriptor table.
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1 pub trait MMObj : fmt::Debug {
2 /// Return an MMObjId for this object.
3 fn get_id (&self) -> MMObjId;
4

5 /// Fill the given page frame with the data that should be in it.
6 fn fill_page (&self , pf: &mut pframe :: PFrame) -> KResult <()>;
7

8 /// A hook; called when a request is made to dirty a non -dirty page.
9 /// Perform any necessary actions that must take place in order for it

10 /// to be possible to dirty (write to) the provided page. This may block.
11 fn dirty_page (&self , pf: &pframe :: PFrame) -> KResult <()>;
12

13 /// Write the contents of the page frame starting at address
14 /// pf.page to the page identified by pf.pagenum.
15 /// This may block.
16 fn clean_page (&self , pf: &pframe :: PFrame) -> KResult <()>;
17 }

Figure 6: The MMObj trait

1 c0048f10 <kproc::KProc::waitpid >:
2 # Compare used stack with end of stack
3 c0048f10: lea -0x10c(%esp),%ecx
4 c0048f17: cmp %gs:0x30 ,%ecx
5 # Continue if we have enough stack space
6 c0048f1e: ja c0048f30
7 <kproc::KProc:: waitpid +0x20 >
8 # Save meta -data about stack
9 c0048f20: push $0xc

10 c0048f25: push $0x10c
11 # __morestack will abort the current process.
12 # The name is a remnant from when rust supported
13 # segmented stacks.
14 c0048f2a: call c000975c <__morestack >
15 c0048f2f: ret
16 # Standard x86 function prelude
17 c0048f30: push %ebp
18 c0048f31: mov %esp ,%ebp
19 c0048f33: push %ebx
20 c0048f34: push %edi
21 c0048f35: push %esi
22 c0048f36: sub $0xfc ,%esp

Figure 7: The disassembled function prelude from
KProc::waitpid.

A copy of the standard rust x86 function prelude
can be seen in Figure 7. There we can see that the
function will first calculate the farthest point on the
stack it will use on line 3. Then it loads the end of
the stack from the %gs segment and compares it to
the required stack space on line 4. Finally, on line
6 it either jumps to the actual function or calls the
morestack function to abort the thread.

Unfortunately, weenix has no support for this type
of stack checking so I needed to implement it myself

if I wanted to use it. Initially, I had thought I could
just disable this functionality, since weenix works per-
fectly fine without it. Unfortunately, however, at the
time that I started this project there was no way to re-
move this stack checking code from functions globally.
This meant that in order for my code to run, I had
to support the stack checking method used by LLVM.
Doing this was actually somewhat less difficult than
I feared it might be. Using the Global Descriptor Ta-
ble (GDT) manipulation routines provided by weenix,
I was able to write a data-structure that would store
the stack endpoint at the appropriate offset. This
data structure can be seen in Figure 8.

From there I still had some small amount of work
to do. I next needed to make sure that there was no
call with stack-checking enabled until we had success-
fully set up the %gs GDT segment, which was actually
somewhat tricky. Next I needed to ensure that dur-
ing process switching we would correctly change the
value of the %gs descriptor and, again, make no calls
with stack-checking enabled until we had successfully
switched processes. Once this was accomplished all
that was left was to wire up the error-reporting func-
tions, which was mostly made difficult by the relative
lack of documentation. Ironically, less then a week
after I had finally finished getting all of this stuff
to work, the rust developers added a switch to the
rustc compiler that let one disable the stack check-
ing completely. Still, the experience of implementing
this was very informative and helped me implement
the thread-local storage described below. It also did
legitimately help with doing the rest of the project as
it helped me find several accidental infinite recursions
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1 #[cfg(target_arch="x86")]
2 #[repr(C, packed )]
3 pub struct TSDInfo {
4 vlow : [u8; 0x30],
5 stack_high : u32 , // At offset 0x30
6 /// The other thread specific data.
7 data : VecMap <Box <Any >>,
8 }

Figure 8: The TLS data structure

in my code.

2.8.2 Thread-Local Storage

Once I had finished getting the stack-overflow detec-
tion in rust working I realized that I had most of a
thread-local storage system. Since there was so little
of it left to do I decided to implement the rest of it.
There is no comparable system in standard weenix.
To do this I simply added a VecMap onto the end of
the structure holding the stack data.

I chose to use this thread-local storage to hold some
information that is held in static variables in weenix,
specifically the current process and thread. By stor-
ing this data in this manner it also removes one of the
obstacles to making reenix usable on multi-processor
machines, although there are still a number of other
issues with doing this. The thread-local data storage
structure is shown in Figure 8. Note that it holds
the thread-local data in a VecMap<Box<Any>>. The
Box<Any> type is a special type that uses limited run-
time type information to perform checked, dynamic
casts. This lets me store arbitrary thread-local data
in this map without having to know exactly what it
is, while the users of said data may still check and
make sure that the data they receive is the correct
type. For example, the currently running process is
stored using in this structure. This can occur despite
the fact that the TLD structure has no notion of what
a process structure is. When the current process is
retrieved the user must manually check, using the Any
trait, that the returned value is, in fact, a process.

2.8.3 Build System

One last unexpected challenge that I had while writ-
ing reenix was getting it to be built at all. The stan-
dard way to build rust code is to use its custom build
tool, cargo. This tool is perfectly sufficient for most
normal rust projects, it even includes fairly good sup-
port for linking to external libraries or invoking other

build tools. Unfortunately, the tool is very difficult
to use if one needs to perform more complicated link-
ing or build operations. Therefore I had to figure out
how to create a makefile that would work with rust.

This turned out to be somewhat difficult because
I needed to make sure that rustc only uses the ver-
sions of the standard library and other libraries that
I built. In addition the dependencies between crates
are much more complicated than normal C depen-
dencies, depending on the libraries created by other
crates. Furthermore there are two slightly inconsis-
tent naming conventions in use in reenix, the weenix
naming conventions and the rust standard library
naming conventions. All this ended up meaning that
I had to create a rather complicated set of makefile
macros that creates the rather large rules dynami-
cally, using the rustc diagnostic functions to get the
names correct.

2.9 Future Work

There is still much work to be done before reenix is
at a point that could be called complete. The most
obvious first step is to complete the remaining three
parts of the weenix project; VFS, S5FS and VM. Doing
this will require solving several design questions for
reenix. Some major open questions are how reenix
should keep track of open files, how we should interact
with the serialized binary data-structures that make
up the S5 file system, and how we should keep track
of memory mappings.

Furthermore, there are still large parts of the
weenix support code that must be rewritten in rust.
Major components that must be ported include the
file system test suite, the actual syscall handler rou-
tines, the ELF file loader and a time slice system.
Each of these are important, though ultimately rather
simple, pieces of an operating system kernel and are
very specific to the architecture of the kernel as a
whole, preventing one from simply using the weenix
versions of these components.

Finally, a more permanent solution should be found
with respect to the problem of rust memory alloca-
tion failure. This problem is discussed in depth in
subsection 3.3 below. Without this, getting the sys-
tem to be truly stable and usable would be difficult
at best and impossible at worst. Once these have
been accomplished it should be possible to continue
to experiment on reenix in even more interesting di-
rections, such as possibly adding networking, SMP,
or 64-bit support.
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3 Rust Evaluation

As mentioned in subsection 1.2 rust is a fairly new,
systems-oriented programming language with a focus
on memory and type safety. Its quite comprehen-
sive type and memory analysis make it seem like it
would be a worthy replacement for C in a world which
increasingly demands both speed and safety. Cre-
ating an operating system is something nobody has
made any serious attempt to do with rust before,
and through implementing reenix I gained a great
appreciation for rust’s strenghts and weaknesses in
this arena. I was also able to see some places where
rust could be changed to improve its usefulness in
this field.

Here I will talk about some of the benefits of using
rust that I found throughout the project. Next, I
will examine some of the issues with using rust, then
looking at the one truely major issue with the lan-
guage as it stands today. Finally, I will end with a
short evaluation of rust’s performance in comparison
to C.

3.1 Benefits of Rust

Over the course of this project I found that there
were many benefits to using rust over C or C++ for sys-
tems programming. These range from simple matters
of convenience and clarity to major improvements in
usability and ones ability to create correct code.

3.1.1 High Level Language

One of the most obvious benefits of using rust over
languages like C in operating systems development
(and in general development as well) is the fact that
it has many of the high-level language constructs pro-
grammers have come to expect from languages such
as C++, Java, Python, and others. Rust gives one stan-
dard programming abstractions such as methods at-
tached to objects, allowing a clearer association of
data with its methods, (sane) operator overloading,
and a module system to allow one to group related
functionality together in a single name-space. All of
these allow one to be much less ambiguous and ver-
bose by creating a much stronger conceptual link be-
tween related pieces.

More important than simple syntactic sugars and
conveniences, rust’s more high-level nature also has
some major effects on how we use the language.
Through traits, rust gives one automatic use and
creation of virtual method tables (vtables) making

1 typedef struct vnode_ops {
2 // ...
3 int (*stat)( struct vnode *vnode ,
4 struct stat *buf);
5 // ...
6 } vnode_ops_t;

Figure 9: The C stat function interface.

the use of interfaces that much easier. It will even
perform the casts that are necessary in such func-
tions in C to make the definition of vtable methods
much less arcane.

Even better, rust is smart enough to be able to
compile code that omits the vtable lookup when it
can prove that it knows the exact type being used
beforehand. This allows one to easily make use of
interfaces in many more places than before, creating
a much more general system than is usually possible
in C.

Rust has automatic scope-based object destruction
semantics and support for custom destructors based
on the type of the destroyed object. This allows one
to make use of Resource Acquisition Is Initialization
(RAII)26 semantics. We can use this to ensure that
we do not ever, for example, access synchronized data
without locking its associated mutex, or fail to release
the mutex when finished with the data it protects.
Furthermore this can be (and is) used to create refer-
ence counting pointers that we are able to guarantee
will always have accurate counts. This greatly sim-
plifies the handling of failure in most functions, since
when a function fails we can simply return an error
and the rust compiler will ensure that the destructors
of all initialized objects are properly run.

Finally, rust will automatically rewrite the func-
tion signatures slightly to avoid copying large
amounts of data when possible. This means that rust
will often rewrite the signatures of functions that re-
turn large objects to instead use out-pointers. By do-
ing so it allows the caller to determine the placement
of the returned object, preventing a memory copy
to, for example, move the returned object onto the
heap. The fact that rustc will perform this rewrite
transparently greatly increases the readability of the
rust source code and reduces ambiguity as to what
a function actually does.

26RAII is the name of a set of programming semantics where
by creating a value one automatically initialize it as well, and
similarly deinitializing it destroys the object. This prevents
the use of uninitialized data.
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For example, compare the stat function seen in
Figure 5 with the C version seen in Figure 9. Both
functions semantically return a ‘stat’ structure or an
error. In C though we must change the signature to
take in the ‘stat’ structure as an out-pointer to avoid
an expensive memory copy operation. Unfortunately,
this obscures the meaning of the function to casual
observation. The rust version of this function, how-
ever, contains the actual semantics in its type signa-
ture, returning a ‘Stat’ or an error. The rust com-
piler, when compiling this function, will change its
signature to match the C version, in order to avoid
the same expensive copy operation. This means that
the rust code will be of comparable speed but that
its semantics are much clearer than C code which does
the same thing.

3.1.2 Type, Lifetime and Borrow Checker

Another major benefit that using rust brings to op-
erating systems developers are its very comprehen-
sive type, lifetime, and borrow checking systems. To-
gether these three tools work to help eliminate entire
classes of errors from code. These systems allow one
to express the meaning of code in a much richer way
than is possible in C.

As mentioned in subsection 1.2, the rust language
is type-safe and procedural. To assist with writ-
ing correct, type-safe code the standard library pro-
vides several wrapper types. Two of the most im-
portant of these wrapper types are the Result<R,E>
type, which is either the successful return value of
an operation (of type R) or a value indicating what
when wrong (of type E), and the Option<T> type,
which is either a value of type T or None, indicat-
ing that there is no value of that type. These are
used to indicate that an operation might fail, or that
a value might not be present. These types are used
all the time in rust code, in fact one might notice
that in the interfaces I have shown above (see Fig-
ure 4, Figure 5 and Figure 6) most functions re-
turn a KResult object, which is simply an alias for
Result<T, errno::Errno>. Through the use of these
types we can more concretely communicate exactly
what the return values of functions mean, even with-
out comments to explain them. Furthermore the type
system will prevent one from making many of the
mistakes that are so common in C when dealing with
functions like this. In rust it is impossible to access
the result of a function that returns a Result object
without explicitly making sure one did not get an er-
ror, which must be handled somehow. This makes

the semantics of, for example, the stat function in
Figure 5 almost totally explicit and checked by the
type system, while the C version in Figure 9, despite
having the same semantics, is much less explicit and
not checked at all.

In addition to the type checker, the borrow checker
and lifetime system also help to prevent many com-
mon types of errors, as well as to make code some-
what clearer. The lifetime system requires that all
pointer references one have are provably safe, and
do not point to uninitialized, or possibly freed data.
Sometimes obtaining this proof requires that one pro-
vide annotations which make explicit the relation-
ships between different types and their lifetimes. Fur-
thermore it also ensures that no pointers may be kept
after the object they point to has been freed. To-
gether they prevent almost all “use after free” bugs
and “uninitialized data” bugs from occurring. Ad-
ditionally, the lifetime system forces one to specify
precisely in the type signature the dependencies be-
tween different types with respect to how long they
are valid when holding pointers. Finally, the bor-
row checker prevents one from concurrently modify-
ing data structures, using the lifetime system to verify
the dependencies between them. This prevents bugs
where one piece of code invalidates the pointers held
by another piece of code.

3.1.3 Macros & Plugins

Another benefit of using rust over C is the fact
that rust has a very comprehensive and powerful
macro and plugin system. As mentioned in subsub-
section 1.2.1, rust macros are hygienic transforma-
tions of the rust abstract syntax tree (AST). These
are very different, and much more powerful, then the
pure text transformation macros that are available
through the C preprocessor.

With C macros one must always be aware that
macros are expanded in the same context in which
they are used. This means that in C, macros might
overwrite or redefine variables if the author is not
careful. In rust, macros will never overwrite any lo-
cal variables that are not explicitly passed into the
macro.

The standard way to define macros in rust is to
use a pattern-matching Domain Specific Language
(DSL). When using this DSL, a macro’s arguments
have basic type information. You can specify whether
each argument is one of a small number of types, in-
cluding expression, statement, type, identifier, and
around six others. These mean that one does not gen-
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erally need to place extra parentheses or other such
delimiters to make sure that the macro parses cor-
rectly. Furthermore it means that one can have quite
powerful pattern matching when expanding macros,
creating different code depending on the exact for-
mat or number of the arguments, something nearly
impossible with the C macro system.

In addition to the already powerful macro system,
the rust compiler, rustc , also supports the creation
of compiler plugins that change its behavior[5]. These
plugins can be used to implement much more com-
plicated macros that are impossible (or at least very
difficult) to create using the standard macro DSL. For
example, one can make use of quasi-quote operations
and access to the file system only within compiler
plugins. One can even use a compiler plugin to cre-
ate an entire new DSL if one wishes (and, in fact,
this is how the macro DSL is implemented). Further-
more these can be used to create tags similar to the
#[derive(...)] seen in Figure 2, which modify the
item they are in front of. Finally they can be used
to create lints that can be used to check the AST
for various kinds of errors and report them. All of
these abilities are extremely useful to all developers,
and thanks to the fact they are purely compile-time
plugins they can all be used with kernel development.

3.1.4 Growing Ecosystem

One last benefit rust has over C is that rust has
a fairly robust and modern standard library, most
of which can be used with little effort in kernel de-
velopment. The rust standard library has every-
thing one would expect from any other high-level lan-
guage. It has multiple types of containers, including
lists, maps, and sets, it has reference counting smart-
pointers, and a reasonably good string module. The
C standard library, on the other hand, is mostly un-
usable in a kernel setting because it is largely an in-
terface to kernel features, such as pipes, files, signal
handling, and memory-mappings. While there are
many parts of the C standard library that may be
used in a kernel context, these parts are far more lim-
ited and difficult to use then their rust counterparts.
Furthermore, there are many common data-types not
included in a C standard library present in rusts, such
as list types and maps.

Furthermore many community rust projects can
be used with little to no modification since they
mostly will use the standard library. This means it is
fairly simple to include packages from a multitude of
sources, which can be very useful when making some-

thing as complicated as an operating system. For ex-
ample, for much of my time creating reenix, I made
use of an external compiler plugin that would let me
write tests to be run with a function. This plugin
was very useful and helped me uncover multiple bugs
related to how I was performing system initialization.
Unfortunately, I was unable to make use of too many
community projects in reenix. This is mostly due to
the fast pace of changes rust was going through when
I was creating reenix, which meant that projects
would quickly stop working with the latest versions
of rust. As rust moves past its first stable release
(currently planned to occur on May 15, 2015) this
will likely become less of an issue as developers can
target a single, stable, version of the language.

3.2 Challenges of Rust

While creating reenix there were many challenges
that I faced that were mainly caused by the rust
compiler. These were mostly cases of the language
not providing the tools I needed to solve the problem
in the way I believed was best. While none of these
problems prevent rust from being used as a language
for operating systems development, and while I was
able to work around them, I do feel that the language
would be improved if they could be addressed.

3.2.1 Structure Inheritance

One challenge that I had with implementing RamFS
was the lack of any form of inheritance among struc-
tures. In many cases there are multiple types which
require access to different functions but hold much
the same data. A perfect example of this is the VNode
shown in Figure 5. You might notice that several of
the methods are simply accessors, like get fs and
get mode on lines 8 & 9. Both of these methods are
there simply because these are fields that all VNodes,
regardless of implementation, should have in order to
work. Indeed, all of the implementors of VNode have
a pair of fields that are simply the file system they
come from and the type of node they are.

It would be much simpler if there was an abstract
base class that had all the fields that will be com-
mon to VNode’s, and then subtypes could add to these
fields and implement some of the class’s methods.
This idea is not new to the rust community and,
indeed, more than half a dozen proposals to add this
and similar forms of inheritance have been proposed,
although all have been put on hold pending the re-
lease of rust 1.0.
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3.2.2 Anonymous Enumerated Data Types

While implementing RamFS, another problem that I
ran into was that I had to present a single type as
being the RamFS VNode to the rest of the kernel. This
is because I needed to make sure that all the VNode
creation methods had the same type, or else rust
would not have been able to type-check them. How-
ever, internally it made a lot more sense to have each
different type of VNode be its own separate type, im-
plementing the methods that specific type of VNode
needs. Furthermore, doing it this way allowed me
to have almost all of the VNode methods be optional
and return the error expected if they were used on a
VNode of the given type, as seen in Figure 5.

In order to meet this restriction, I created an enu-
meration manually that could hold all of the sep-
arate variants of RamFS VNodes. This enumeration
then had all the VNode methods implemented for it
by simply passing the arguments down to the actual
VNodes it held. All the other types of VNodes then
declared themselves as returning this enumeration in
their create and lookup methods.

This worked but, given how many functions the
VNode trait has, it was very time-consuming to code.
One way to improve on the ergonomics of this would
be to allow some sort of anonymous enumeration
type in rust. If such a type were able to automati-
cally implement and pass down, shared functions of
its constituent types this sort of filler code could be
avoided. Furthermore, this type would be guaranteed
to have a known size at compile time, allowing it to be
used without pointer indirection, as returning a trait
would require. This would make presenting these col-
lections of related data-structures as one type much
easier.

3.2.3 Static Ownership

One last area where rust could be improved is in its
handling of statically allocated data. In an operating
system kernel there is a lot of data that is global and
shared by all processes. This includes the scheduler’s
queue, the list of loaded drivers, the file systems, the
cached pages of memory, and many other things be-
sides. As this is all global data, and there is only
a single copy in existence, it would make sense to
have all these data-structures be held as statically
allocated Option<T>27 with the default set to None.
This would clearly show in the types that the value
being held is statically owned by the whole system

27See subsubsection 1.2.2

and that it is initially not initialized, requiring setup
before use.

Unfortunately, many of these, such as a Vec of ac-
tive processes, or the collection of initialized device
drivers, are data-structures that have special destruc-
tor code to make sure that its contents are properly
de-initialized and its backing memory is destroyed.

Currently rust does not allow such structures to
be allocated statically. Presumably this is because it
does not have any way to ensure that the destruc-
tors are run when the program exits. While this does
make sense it seems rather strange not to offer a way
to tell the compiler to ignore this detail, since it would
often be the case that we would not care if the de-
structors are not run on shutdown.

The workaround that I used in reenix was to dy-
namically allocate all of these data structures. I
would then store them as a static pointer which was
dereferenced whenever I wished to use these struc-
tures. While this worked, it had the unfortunate
consequence that it took up heap space that could
be better used for other things. Furthermore it is
likely that the heap-allocated data was less efficiently
packed then the static data would have been, which
ate up even more memory. Finally, since dereferenc-
ing an arbitrary pointer is never a safe operation (as
it might point to uninitialized, illegal, or otherwise re-
served memory), the language is unnecessarily ham-
pered in its ability to verify the kernel.

3.3 Critical Problem: Allocation

While many of the problems that I faced while us-
ing rust could be considered relatively minor there
is one issue I had with the language that absolutely
must be addressed before it can be used as a serious
language for operating system development. The is-
sue is with the semantics of heap-memory allocation
in rust, more specifically what happens when alloca-
tion fails.

3.3.1 Allocation In Rust

In rust heap memory is represented by a construct
called a box. An object that resides in heap allocated
memory is called a boxed object. Boxes can be cre-
ated by placing the box keyword28 before the value
to be stored on the heap, transferring ownership of
the value to the newly created box. The box key-

28 One may also use the Box::new function to create a heap
allocated pointer, however this is inlined to create code iden-
tical to just using the box keyword.
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1 #![ feature(box_syntax )]
2

3 /// A buffer
4 struct Buf {
5 val: [u8;16],
6 }
7

8 impl Buf {
9 /// Create a buffer

10 #[ inline(never)]
11 fn new() -> Buf {
12 Buf { val: [0;16] , }
13 }
14 }
15

16 fn main() {
17 let x = box Buf::new();
18 // Do things with the buffer ...
19 }

Figure 10: A program using heap allocation.

word handles both the allocation of heap space and
the initialization of it for the programmer.

The standard recommendation in rust is to never
write a function that directly returns a boxed
object[5]. Instead, the function should return the ob-
ject by value and the user should place it in a box us-
ing the box keyword. This is because (as mentioned in
subsubsection 3.1.1) rust will automatically rewrite
many functions returning objects to instead use out-
pointers to avoid a copy.

In Figure 10 we see a small example program that
makes use of heap-memory allocation. This program
follows normal rust style recommendations and only
defines functions which returns the buffer by value29.

To make the buffer returned by Buf::new() heap
allocated we use the box keyword on line 17. Seman-
tically this line says that we should (1) create a Buf
object using the Buf::new function, (2) allocate heap
space to store the newly created Buf and (3) move the
Buf into the heap allocated space. The compiler will
make this operation more efficient by getting rid of
the local copy and simply having Buf::new write di-
rectly into heap memory, keeping the same semantics
with slightly different mechanics.

When compiling this code the rust compiler uses
the exchange malloc function, shown in Figure 11,
to allocate the memory needed for the buffer. The
exchange malloc function is a special type of func-

29 The #[inline(never)] in the example simply prevents the
rust compiler from inlining the call to the constructor, which
would make the compiled code in Figure 12 more difficult to
read.

1 main:
2 # Stack check function prelude removed.
3 # See Figure 7 for details.
4 # Reserve stack space for function.
5 subl $56, %esp
6 # Pass the align argument to exchange_malloc
7 movl $1, 4(%esp)
8 # Pass the size argument to exchange_malloc
9 movl $16, (%esp)
10 # Call exchange_malloc.
11 # Note that no null check is performed on the
12 # returned pointer.
13 calll heap:: exchange_malloc
14 # Store returned pointer on the stack
15 movl %eax, 36(% esp)
16 # Pass the returned pointer as first argument
17 # to Buf::new.
18 movl %eax, (%esp)
19 # Call Buf::new. Note this returns nothing.
20 # The first argument is an out pointer.
21 calll Buf::new
22 # 36(% esp) is now a pointer to an initialized
23 # Buf object.

Figure 12: The (cleaned up) assembly created when
compiling Figure 10.

tion called a lang item. The lang items are functions
or types that the rust compiler knows additional in-
formation and invariants about the function or type
beyond what it normally would. In this case rustc
knows that exchange malloc can never return a null
or invalid pointer for a non-zero length allocation30.
This is guaranteed in the function itself by the check
on line 14, calling abort if the allocation fails.

The compiler uses this information to optimize the
compiled code it creates by not checking that the al-
located pointer is null. It further uses the fact that
the constructor is rewritten to use an out argument
to allow it to make line 17 of Figure 10 run without a
copy. These combine to cause the compiler to create
code similar to Figure 12 from the code in Figure 10.

By aborting when unable to allocate memory and
never returning null, rust entirely hides the fact that
allocations may fail from the programmer. As far
as the rust programmer (and compiler) are aware,
allocation is infallible and perfect.

3.3.2 How Failure Works & Why it Matters

One might wonder why rust does not expose the fact
that heap allocations may fail. There is no official rea-
son present in the documentation for why this is kept

30It will return the invalid 0x1 pointer for all zero length
allocations.
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1 // Copyright 2014 The Rust Project Developers.
2 // Licensed under the Apache License , Version 2.0
3 // Taken from liballoc/heap.rs
4

5 /// The allocator for unique pointers.
6 #[cfg(not(test ))]
7 #[lang="exchange_malloc"]
8 #[ inline]
9 unsafe fn exchange_malloc(size: usize , align: usize) -> *mut u8 {

10 if size == 0 {
11 EMPTY as *mut u8
12 } else {
13 let ptr = allocate(size , align);
14 if ptr.is_null () { ::oom() }
15 ptr
16 }
17 }
18

19 // Taken from liballoc/lib.rs
20

21 /// Common out -of-memory routine
22 #[cold]
23 #[ inline(never)]
24 pub fn oom() -> ! {
25 // FIXME (#14674): This really needs to do something other than just abort
26 // here , but any printing done must be *guaranteed* to not
27 // allocate.
28 unsafe { core:: intrinsics ::abort() }
29 }

Figure 11: Rust’s liballoc code defining allocation.

hidden but various rust developers have discussed it
somewhat. The general idea is that having box ex-
pose the fact that allocation can fail is to “unwieldy”
for how uncommon it is[10]. Furthermore when allo-
cation does fail rust will use the call frame informa-
tion (CFI) based exception-handling system created
for C++ to unwind the stack of the current task and
ensure all destructors are run.

This is, in some ways, a quite understandable so-
lution for most use cases. When writing user code
this is generally not a problem as demand paging31,
swapping, and the large amount of physical memory
in most systems mean that actual allocation failure
is quite rare. In fact, a process is more likely to just
be killed when there is very little memory than get
a failed malloc(3), mmap(2) or brk(2) call (at least
on linux). Furthermore CFI exception handling has

31 Demand paging is the practice of saying that memory al-
locations have succeeded without actually having allocated or
loaded the memory requested yet. When the memory is ac-
tually used by the process the kernel will allocate or load it.
This is often combined with memory-overcommit, a practice
where processes are allocated more memory then is actually
available. These two techniques are some of the most impor-
tant applications of virtual memory and are used extensively

many good implementations for user-space thanks to
the popularity of C++, meaning that in the (incredibly
rare) case that allocation does fail the other threads
in a rust process will still have a consistent state.

Unfortunately, while this is an acceptable strategy
for user processes it is absolutely terrible for kernel
code. Kernel code is generally unable to make use of
demand paging. This is for several reasons. Firstly,
unlike a user-space process almost all of the kernel’s
memory is actually being used, mostly to cache pages
of data from disk and hold the actual memory from
all of the system processes. This makes sense since
any memory that is earmarked for the kernel but not
being used is actually being wasted, unlike with user
processes where such memory is most likely not even
allocated thanks to demand paging. In fact, many
kernels will deliberately fill any empty memory with
data from the hard-disks if there is no other work go-
ing on. Secondly, large parts of the kernel are either
accessed so often they cannot be paged out to sec-
ondary storage (for example, the syscall code) or are
so critical they cannot be paged out without making
it impossible to page them back in (for example, the

in the implementations of mmap and fork.
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disk driver or scheduler).
The end result of this is that allocation failure is a

reasonably common occurrence in operating system
kernels. Even worse it is generally not even a big deal
in kernel code. Generally when one has failed to allo-
cate something, the solution will be to either return
an errno indicating this failure (ENOMEM) or to sim-
ply tell the system to remove some of the cached, but
unused, pages of memory and try again. Indeed one
of the final, and hardest, tests a student’s implemen-
tation of weenix must pass is being able to continue
running even when a process is eating all available
memory. When this test is being run it is common
that almost all allocations in other parts of weenix
will fail.

This is not even getting into the major practical
problems with this error handling strategy in kernel
development. The foremost among these is the fact
that using CFI stack unwinding is much more difficult
in a kernel context than it is in a user-land one. Many
users of C++ in a kernel context ban them altogether,
such as Apple’s I/O kit driver system[2]. Further-
more, even if CFI unwinding is implemented, there
is often a lot more manipulation of system-wide data
needed in making an operating system than there is
in normal user-land processes, and creating destruc-
tors that will correctly undo these changes is difficult.

3.3.3 Solutions and Workaround

Thankfully, unlike many of the other problems with
rust I have encountered, this one has a solution that
is fairly simple in theory. All that would need to be
done is to change it so that heap memory allocation
might fail, and all heap memory must be explicitly
checked before being used. In fact this could the-
oretically be done by patching the standard-library
code (although one would not be able to use the box
syntax). Unfortunately, there are some obstacles to
doing this.

Firstly, as mentioned above, the allocation func-
tion in rust is a special lang item function. This
is why the exchange malloc function is able to be
called before the call to its contents constructor, as
can be seen in Figure 12. Switching to using some
other function would mean this optimization would
not be performed without modifying the rust com-
piler. This would massively slow down rust code by
forcing all heap allocated objects to be copied over
from the stack. Depending on the size of the ob-
jects it could also easily cause stack overflows as the
objects are temporarily stored on the stack. With

the recent approval of RFC 80932 this might not be
the case in the near future, however as of April 2015
patching the rust compiler would be necessary.

Secondly, large parts of the rust standard library
depend on the pseudo-infallible nature of allocation
present at this time. At an absolute minimum every
single one of the collections data structures and smart
pointers will need to be rewritten to support a fallible
allocation model, as well as all data-structures that
directly depend on them. Furthermore many com-
mon interfaces will need to be changed since it can
no longer be assumed that, for example, inserting a
value into a list will succeed. In the end making this
change would probably require rewriting almost the
entire standard library, adding functions that expose
the fallible nature of memory.

In the end, I had to create a workaround for this
problem. This involved creating a simple allocator
in rust that is given a small percentage of mem-
ory immediately upon system boot. When a function
was unable to allocate memory through the normal
methods it would make use of this backup allocator.
Whenever the kernel did an operation that might al-
locate memory it was wrapped in a macro that would
check to see if this backup allocator is in use. If it was,
the macro would assume that the allocation had failed
and would destroy the result of the operation, hope-
fully freeing the memory being used in the backup
allocator. This is rather fragile for obvious reasons
and cannot be expected to scale very well at all. In-
deed, it is not even clear if this solution would have
been workable for this project, since memory alloca-
tion failure would likely not become a real issue until
well into the VM project, implementing virtual mem-
ory.

Unfortunately, this one issue largely prevents the
use of rust in the creation of an operating system
kernel. One must be able to safely and cleanly re-
cover from memory allocation failure without abort-
ing. Until it is possible to do this without sacrificing
a huge amount of speed rust will likely not be a real
possibility in operating system development.

3.4 Performance

One last comparison that must be made when eval-
uating a new language is its performance. Taking
these types of measurements are rather difficult and
are prone to random variance based on the host com-

32https://github.com/rust-lang/rfcs/blob/master/text/
0809-box-and-in-for-stdlib.md (April 2015)
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puter. Furthermore, it is difficult to come up with
comparisons that are valid between the two imple-
mentations. Still I did set up identical test cases in
both the current reenix and my implementation of
weenix as it stood after finishing DRIVERS. Lacking
any normal performance testing or call tracing tools,
I restricted my comparison to the process control sub-
system of reenix and only performed a few tests.

I ended up running two performance tests on the
two operating systems. In the first I simulated a sys-
tem where multiple threads are all accessing a con-
tested resource, in this case a shared integer. All
threads will co-operatively add together this integer,
switching out occasionally. The code for this and the
times are found in Figure 13. For this test the rust
code took, on average, 3.040 times as long as the C
code to run. This number was fairly consistent across
all workloads, so it seems likely these costs scale with
the amount of work that rust is doing.

I also tested the time it takes to perform a common
system call, waitpid, on both systems. These times
can be found in Figure 14. For this function we found
that rust was, on average, 2.036 times slower than C.

This seems to indicate that the amount of slow-
down in different functions will vary and is related to
something other than the language’s compiler. The
most likely candidate for what causes this slowdown
is probably allocation, since rust seems to do it much
more often than the C code would, and in rust every
allocation has a higher cost, since the right allocator
must be found from a list. Other contributing factors
could include the stack-checking code in rust, the
greater amount of code to perform all the required
error checks, or a larger amount of vtable lookups
generated by the use of rust traits.

4 Conclusions

When I started this project I did so with the goal of
creating a unix-like operating system on the level of
weenix in rust. This goal proved to be much too am-
bitious given the amount of time I had to complete
the project. I was able, however, to complete the first
two parts of the weenix project, proving that a com-
plete reenix is likely possible. Furthermore, I was
able to draw some important conclusions about the
use of rust in a kernel development context from this
project. This is particularly important given that, as
far as I know, nobody else has ever really attempted,
or made as much progress on, an operating systems
project of this scope in rust before now.

I was, I believe, able to conclusively show that the
basic design of a unix-like operating system kernel is
feasible to build using rust. Furthermore, the expe-
rience showed me that, although there are still some
rough edges, the implementation work that would be
done by students doing the weenix project would gen-
erally be simpler to accomplish in rust than in C.
However, the implementation of the support code was
sometimes more difficult in rust and resulted in code
that was less clear. Still, overall I would say that rust
would be an improvement.

Through doing this project I was able to get a
good sense of some of the ways that rust could im-
prove with regards to operating system kernel pro-
gramming. Most of these desired improvements fix
issues that are at the level of annoyances and are ei-
ther easy to add to rust, being added to rust at
some point in the future, or are simple enough to
work-around. I only found one issue, memory alloca-
tion failure, during the project that is truely critical
to address in order to make rust a serious choice in
kernel programming. Unfortunately this issue is, at
once, almost impossible to really work around, very
complicated to fix, and not considered an important
issue by the developers of rust.

The fact that rust ended up being substantially
slower than C is rather discouraging. On the other
hand, it is likely that much of this slowdown has to
do with the overhead of allocating memory in reenix.
To fully determine the scope of this issue one must do
much more in depth research than I was able to do
here. Furthermore, the C version can, and sometimes
does, omit checks that the rust compiler will always
include. Together all of these add up to the conclu-
sion that, while worrying, the decrease in speed of
rust is not something that is insurmountable. Still,
this will need to be considered if one wants to con-
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Rust version of the Mutex test function.

1 extern "C" fn time_mutex_thread(high: i32 , mtx: *mut c_void) -> *mut c_void {
2 let mtx : &Mutex <i32 > = unsafe { transmute(mtx) };
3 let mut breakit = false;
4 loop {
5 if breakit { kthread :: kyield (); breakit = false; }
6 let mut val = mtx.lock (). unwrap ();
7 if *val == high { return 0 as *mut c_void; }
8 *val += 1;
9 if *val % 4 == 0 { kthread :: kyield (); }

10 else if *val % 3 == 0 { breakit = true; }
11 }
12 }

C version of the Mutex test function.

1 typedef struct { int cnt; kmutex_t mutex; } data_mutex;
2

3 void *time_mutex_thread(int high , void* dmtx) {
4 data_mutex* d = (data_mutex *)dmtx;
5 int breakit = 0;
6 while (1) {
7 if (breakit) { yield (); breakit = 0; }
8 kmutex_lock (&d->mutex);
9 if (d->cnt == high) { break; }

10 d->cnt++;
11 if (d->cnt % 4 == 0) { yield (); }
12 else if (d->cnt % 3 == 0) { breakit = 1; }
13 kmutex_unlock (&d->mutex);
14 }
15 kmutex_unlock (&d->mutex);
16 return 0;
17 }

High # of Threads Rust Time (seconds) C Time (seconds) Slowdown
100 2 0.0238 0.0079 2.999
100 10 0.0851 0.0294 2.889
100 100 0.7865 0.2782 2.827

10000 2 1.9372 0.5920 3.272
10000 10 6.7841 2.1688 3.128
10000 100 61.611 19.697 3.128

Figure 13: Rust & C Mutex timing code and average of 10 runs

Child process State C time Rust time
Alive 0.51325 ms 1.1435 ms
Dead 0.37493 ms 0.6917 ms

Figure 14: Time in milliseconds to run waitpid function on average over 1000 runs.
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sider using rust for an operating systems project.
Overall I would say that reenix was fairly success-

ful. By getting as far as I did I was able to prove that
the idea behind the project is fundamentally sound. I
was also able to show that, overall, the rust language
does help with creating this type of highly compli-
cated system, and, with a small amount of modifica-
tion, could effectively replace C in this field.
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